Validation of CERES ST Retrieved MODIS Cloud Properties Using DOE AMF-China and Cloudsat/CALIPSO Observations

- Xiquan Dong, Baike Xi, and Yujun Qiu
- University of North Dakota
- Pat Minnis, NASA LaRC

CHINA Shouxian Taihu Shanghai Taihu Shanghai Ancillary Sites DESERT • LOW HILLS • PLATEAU • MTNS

Objectives

- 1. Compare ARM radar-lidar derived cloud base and top heights with MODIS derived effective cloud height over Shouxian, China (ARM Mobile Facility, AMF, 32°33'N, 116°47'E).
- 2. Compare cloud microphysical properties derived from ARM radar-radiometer with CERES-MODIS retrievals.
- 3. Compare cloud profiles observed/ retrieved from CloudSat and ARM radar-radiometer with

DOE AMF-China Measurements and Retrievals

Hbase and Htop: Cloud-base and -top heights determined by ARM cloud radar-lidar measurements

Liquid water path (LWP): Microwave radiometer

Cloud droplet effective radius re: retrieved by radar reflectivity and LWP

Optical depth Tau: 1.5*LWP/re

All results are averaged over 1-hr period centered on TERRA overpass AMF-China site during Oct. 15 - Dec. 15, 2008.

CERES-MODIS cloud height and Microphysics (Ed_2G SSF products, TERRA only)

Effective cloud height H_{eff} : defined as the lowest altitude having T_{eff} in the GEOS vertical profile of atmospheric temperature.

Note that H_{eff} is the cloud radiative center from satellite point of view, not cloud physical center.

Daytime: the 4-channel VISST (Visible Infrared Solar-Infrared Split-window Technique).

Nighttime: the 3-channel Solar-infrared Infrared Splitwindow Technique [SIST].

Effective radius re: derived from 3.7-um radiance
Optical depth τ: visible (day) and solar-infrared (night)
LWP ~ re * τ

CloudSat/CALIPSO measurements/retrievals

CloudSat/Calipso (CC): (Results from CSU and CCCM) Level 2B data products, averages over a 1°x1° grid box

Hbase/Htop heights: determined by both 94 GHz radar and Lidar with a vertical resolution of 240 m.

Liquid/ice particle sizes and contents/paths: retrieved from 94 GHz radar (Radar only, works for both day and night time with higher uncertainty than radar+ visible optical depth)

Objective 1:

Compare ARM radar-lidar derived cloud base and top heights with CERES-MODIS derived effective cloud height over Shouxian, China (ARM Mobile Facility, AMF, 32°33'N, 116°47'E).

Comparison of TERRA MODIS with AMF-China (10/15-12/15, 2008)

- 1. Most of CERES-MODIS derived effective cloud heights H_{eff} are within ARM radar-lidar derived cloud bases and tops
- 2. But why some H_{eff} are close to cloud tops (Samples 5 and 6), while some (Samples 10 and 11) are near cloud centers or bases

As $\tau \sim 5 \rightarrow \epsilon \sim 1$, the radiance mostly from cloud top $\rightarrow H_{eff} \sim H_{top}$

H_{eff} near cloud top (Sample 6)

H_{eff} near cloud base (Sample 11)

Nighttime comparison is similar to its daytime counterpart

- 1) Most of MODIS H_{eff} are around cloud centers (\triangle)
- 2) H_{eff} values have higher correlation with cloud tops

Objective 2

 Compare cloud microphysical properties derived from ARM radar-radiometer with MODIS retrievals (liquid-phase only)

- 1) Re difference between ARM and MODIS is 1.7 μ m with low correlation because MODIS re represents cloud top.
- 2) Correlations for optical depth and LWP are high, but MODIS values are smaller than ARM results, mainly from samples 2 and 8.

Sample 2: 20081028_02 UTC (daytime)

Sample 8: 20081107_14 UTC (Nighttime)

Objective 3

Compare cloud profiles observed/
retrieved from CloudSat and ARM radar-radiometer with MODIS retrievals

Case 1: 20081031

2) MODIS retrieved ice particle diameter is close to Cloudsat retrieval, but why its height is much higher than ARM and CloudSat/CALIPSO?

1) Excellent agreement in radar reflectivity between Cloudsat and ARM

Case 2: 20081116

- 1) ARM radar reflectivity is slightly higher than CloudSat.
- 2) MODIS retrieved effective radius agree very well with CloudSat retrievals.

Conclusions

1) Cloud height comparison:

Most of CERES-MODIS effective cloud heights $H_{\rm eff}$ fall within ARM radar-lidar derived cloud bases & tops, and have highest correlation with cloud top

2) Cloud Microphysics comparison:

- → The re difference between ARM and MODIS is 1.7 µm with low correlation because MODIS re represents cloud top.
- → Correlations for optical depth and LWP are high, but MODIS values are smaller than ARM results

Conclusions (Cont')

3) Cloud Profile comparison:

- ARM and CloudSat radar reflectivity agree well in both cases.
- CERES-MODIS retrieved liquid and ice particle size agree well with CloudSat retrievals. Only 2 samples.

What are sensitivities of ARM cloud radar and CloudSat (94 GHz)

CloudSat/CALIPSO (CC)

- Part of A-train constellation of satellites
 - Trails Aqua by one minute
- CloudSat: On-board 94 GHz cloud profiling radar
 - Obtains cloud profile information in addition to cloud microphysical properties
 - 1.7 km along-track resolution by 1.4 km crosstrack resolution
- CALIPSO: On-board Cloud Aerosol Lidar
 - Operates at 532 and 1064 nm
 - 100 m footprint
 - 333 m horizontal resolution
 - 30-60 m vertical resolution